

vancements in Coupled Flow a Advancements in Coupled Flow and Material Modeling for Entry Systems

14th Ablation Workshop

Company/Organization Conference Name, Conference Dates **Georgios Bellas Chatzigeorgis² , Olivia M. Schroeder² ,** S ergio Fraile Izquierdo², Eric Stern¹, Nagi N. Mansour² **Jeremie B.E. Meurisse² , Joseph C. Schulz¹ , Bruno Dias³ ,** ¹NASA Ames Research Center, Moffett Field, CA ²Analytical Mechanics Associates, Inc. 3Oak Ridge Associated Universities

Nov 5th, 2024

Advancements in Coupled Flow and Material Modeling for Entry Systems

Main Strategies to Couple Flow and Material

One-Way Coupling

Exchange of boundary conditions from flow solver to material solver

- decouples the flow field entirely from the material response;
- assumes that the flow field reaches steady state;
- assumes that the material ablation is in chemical equilibrium.

Two-Way Coupling

Exchange of boundary conditions between flow and material solvers

Unified Coupling

No exchange of boundary conditions between flow and material

Combined flow field and material solver

- is based on a iterative procedure to couple the flow field and material;
- assumes that the flow field adapts instantaneously to the material shape change.
- solves the flow field and the material in the same computational domain;
- models the interface progression as a cause of the material degradation;
- requires effective properties at the interface region.

Advancements in Coupled Flow and Material Modeling for Entry Systems

Multi-Physics One-Way Coupling for Venus Mission Concept

Advancements in Coupled Flow and Material Modeling for Entry Systems [5] Lachaud, J., et al. "A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures." 2017.
3

[4] Wright, M.J., et al. "Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia-Version 4.01.1." 2009. [5] Lachaud, J., et al. "A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures." 2017. [6] Weller, H.G., et al. "A tensorial approach to computational continuum mechanics using object-oriented techniques." 1998.

Two-Way Coupling with Mesh Motion for 3MDCP Model Validation

Arc-Jet Test for Model Validation

- IHF-385 IsoQ sample with 3MDCP thermal protection material
- Exposure times = 38 39 sec
- Recession measured= 4.3 4.8 mm
- Recession computed = 4.9 mm
- Validate 3MDCP material model

Two-way Coupling with Mesh Motion

Mesh Motion Approach

 $\mathbf{A}^{\text{in}} = \phi(||\mathbf{x}^{\text{in}}_i - \mathbf{x}^{\text{bc}}_j)$

 M^{bc} and A^{in} are built using Wendland^[10] Radial Basic Function: $\phi(\|x\|) = (1 - \|x\|)^2$

 $\mathbf{r}_{\scriptscriptstyle\rm MB}^{\rm bc}=\mathbf{M}_{\scriptscriptstyle\rm MB}^{\rm bc}\;\bm{\alpha}$ $\boldsymbol{\alpha} = \left(\mathbf{M}_{\scriptscriptstyle\mathrm{MB}}^{\mathrm{bc}}\right)^{-1}\mathbf{r}_{\scriptscriptstyle\mathrm{MB}}^{\mathrm{bc}}$ $\mathbf{r}^{\text{in}}_{\text{\tiny{MB}}} = \mathbf{A}^{\text{in}}_{\text{\tiny{MB}}}$ $\boldsymbol{\alpha}$ $\mathbf{r}_{\text{\tiny CFD}}^{\text{in}} = \mathbf{A}_{\text{\tiny CFD}}^{\text{in}} \ \boldsymbol{\alpha}$

α is computed once on MR grid, then reused on CFD grid, significantly reducing computational cost.

[10] Rendall, T., et al. "Efficient mesh motion using radial basis functions with data reduction algorithms." 2009.

Advancements in Coupled Flow and Material Modeling for Entry Systems **Advancements** in Coupled Flow and Material Modeling for Entry Systems

Approaches for Two-Way Coupling with Pyrolysis Gas Blowing

Two-way Coupling with Pyrolysis Gas Blowing

For all trajectory points: For all trajectory points: **algo** Solve CFD without blowing BC + solve Radiation
Update MR BC using CFD results $[q_w, p_w]$ Update MR BC using CFD results $[\,q_w$, $p_w\,]$
Solve MR with blowing correction Solve MR with blowing correction While $|T_{w,CFD} - T_{w,MR}| >$ threshold: While |T_{w,CFD} − T_{w,MR}| > threshold:
Update CFD BC using MR/GSI [m̓_g, y_w, m̓_c, ρ_g] Solve CFD with blowing BC + solve Radiation Update MR BC using CFD results $[\,q_{_W},\;p_{_W}\,]$ Solve MR without blowing correction ory points: **algo**
thout blowing BC + solve Radiation
using CFD results $[q_w, p_w]$
h blowing correction
 $-T_{w,MR}| >$ threshold:
D BC using MR/GSI $[m_g, y_w, m_c, \rho_g]$
with blowing BC + solve Radiation
BC using CFD results $[q_w, p_w]$
w **points:**
 using BC + solve Radiation

mg CFD results $[q_w, p_w]$

wing correction

MR|> threshold:

using MR/GSI $[m_g, y_w, m_c, p_g]$

h blowing BC + solve Radiation

using CFD results $[q_w, p_w]$
 $[q_w, p_w]$
 $[q_w, p_w]$
 $[q_w, p_w]$

Surface Mass & Energy Balance Approach

Wall Composition using B' Blowing Correction

 $z_{w,k} = \frac{z_{e,k} + B'_g \ z_{g,k}}{\sum_{k}^{N_e} z_{wsg,k}}$ $z_{w,C} = \frac{L + z_{e,C} + B'_{g} z_{g,C}}{\sum_{k}^{N_e} z_{wsg,k}}$ $L = \max(100B'_q, 200)$ Equilibrium $(p_w, T_w, z_{w,k}) \rightarrow x_{wg,k}$ $h_w = \sum_{i=1}^{N_s} x_{wg,i} h_{wg,i}$

$$
C_H = \frac{q_w}{h_e - h_w}
$$

$$
\frac{C'_H}{C_H} = \frac{\ln\left(1 + 2\lambda(B'_g + B'_c)\right)}{2\lambda(B'_g + B'_c)}
$$

Limitations After the peak heating, $h_{w} - h_{e} < 0$ $q_w = q_{conv} + q_{diff} + q_{adv}$

 \dot{m}_c without B' assumption

Two-way coupling with pyrolysis gas blowing (19 species) and mesh motion for simulating a PICA arc-jet case based on Milos^[17]

[17] Milos, F.S. and Chen, Y-K. "Ablation and thermal response property model validation for phenolic impregnated carbon ablator." 2010.

Advancements in Coupled Flow and Material Modeling for Entry Systems 5

Unified Coupling for Oxidation Model Validation using Flow Tube Data

a b c d

Sample Construction (Section 2008)
Sample Construction

4D-MCT sample courtesy of Ringel^[20]

courtesy of Ringel^[20] FiberForm surface area using filtering

[18] Dias, B., et al. "Numerical Simulation of FiberFormUsing a Unified Flow-Material Approach: A Comparison With Flow-Tube Reactor Experiments." 2024. [19] Panerai, Francesco, et al. "Experimental and numerical study of carbon fiber oxidation." 2014. [20] Ringel et al. "Carbon Fiber Oxidation" in 4D, In preparation.

Advancements in Coupled Flow and Material Modeling for Entry Systems

GigaFRoST

Unified Coupling for Oxidation Model Validation using Flow Tube Data

[21] Panerai, Francesco, et al. "Experimental measurements of the high-temperature oxidation of carbon fibers." 2019. [22] Prata, Krishna Sandeep, et al. "Air–carbon ablation model for hypersonic flight from molecular-beam data." 2022. 7

Advancements in Coupled Flow and Material Modeling for Entry Systems

Conclusion

Flow and Material Coupling Strategies for Entry Systems

Coupling strategies play a crucial role in capturing multiphysics interactions between flow and material, providing varying levels of accuracy and computational efficiency depending on the application.

- **1. One-Way Coupling** offers a computationally efficient approach for providing initial estimates in multiphysics problems. It is ideal for mission concept studies and the development of novel physics-based models (e.g., AERACEPT).
- **2. Two-Way Coupling** ensures accurate modeling by capturing interactions between material mesh motion and flow fields through iterative exchanges. This approach is essential for arc-jet simulations (e.g., 3MDCP validation) and flight mission predictions involving trajectory and radiation (e.g., Dragonfly). Fidelity can also be enhanced through pyrolysis gas coupling.
- **3. Unified Coupling** offers a combined flow and material solution within a single solver, eliminating the need for mesh motion and iterative steps. The oxidation model has been validated using flow tube experiments. It relies on a pressure-based solver, restricted to subsonic regimes. Future work will involve a coupling between the unified solver and hypersonic CFD.

Achieving the right balance between computational cost and fidelity is essential, as different applications demand different levels of precision to meet their specific goals.

Advancements in Coupled Flow and Material Modeling for Entry Systems

References

[1] Gentry, D. M., et al. "Nephele: An Entry Probe & Sonde Concept for a Venus Ride-Along or Small Spacecraft Mission." 20th International Planetary Probe Workshop (IPPW). 2023. [2] Gentry, D. M., et al. "AERACEPT (Aerosol Rapid Analysis Combined Entry Probe/sonde Technology): Enabling Technology for Missions to the Venus Clouds." 23rd Meeting of the American Geophysical Union (AGU). 2023.

[3] Meurisse, J.B.E., et al. "Modeling of an Aerosol Capture Probe during Venus Atmospheric Entry." 21st International Planetary Probe Workshop (IPPW). 2024.

[4] Wright, Michael J., et al. "Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia-Version 4.01.1." No. NASA/TM-2009-215388. 2009.

[5] Lachaud, Jean, et al. "A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures." International Journal of Heat and Mass Transfer 108 (2017): 1406-1417.

[6] Weller, Henry G., et al. "A tensorial approach to computational continuum mechanics using object-oriented techniques." Computersin physics 12.6 (1998): 620-631.

[7] Candler, Graham V., et al. "Development of the US3D code for advanced compressible and reacting flow simulations." 53rd AAA Aerospace Sciences Meeting. 2015.

[8] Schroeder, Olivia, et al. "Ares: A Coupling Methodology for Ablation Modeling." AIAA SCITECH 2024 Forum. 2024.

[9] Schulz, Joseph C., et al. "Development of a three-dimensional, unstructured material response design tool." 55th AIAA aerospace sciences meeting . 2017.

[10] Rendall, Thomas CS, and Christian B. Allen. "Efficient mesh motion using radial basis functions with data reduction algorithms." Journal of Computational Physics 228.17 (2009): 6231-6249.

[11] Brandis, Aaron M., and Brett A. Cruden. NEQAIR v15. 0 release notes: Nonequilibrium and equilibrium radiative transport and spectra program. No. ARC-E-DAA-TN72963. 2019.

[12] Sahai, Amal, and Christopher O. Johnston. "On Computationally Efficient Radiative Transfer Calculations for Three-dimensional Entry Problems." AIAA SCITECH 2023 Forum. 2023.

[13] Thornton, John M., et al. "Coupling heatshield response and aerothermal environment for mars entry via surface gas blowing." AIAA SCITECH 2023 Forum. 2023.

[14] Johnston, Christopher O., Peter A. Gnoffo, and Alireza Mazaheri. Influence of coupled radiation and ablation on the aerothermodynamic environment of planetary entry vehicles. No. NF1676L-16461. 2013.

[15] Dias, Bruno, Alessandro Turchi, and Thierry E. Magin. "Stagnation-line simulations of meteor ablation." 45th AIAA Thermophysics Conference. 2015.

[16] Cross, Peter G., and Iain D. Boyd. "Conjugate analyses of ablation in rocket nozzles." Journal of Spacecraft and Rockets56.5 (2019): 1593-1610.

[17] Milos, Frank S., and Y-K. Chen. "Ablation and thermal response property model validation for phenolic impregnated carbon ablator." Journal of Spacecraft and Rockets 47.5 (2010): 786-805. [18] Dias, Bruno, et al. "Numerical Simulation of FiberForm Using a Unified Flow-Material Approach: A Comparison With Flow-Tube Reactor Experiments." AIAA AVIATION FORUM AND ASCEND 2024. 2024.

[19] Panerai, Francesco, et al. "Experimental and numerical study of carbon fiber oxidation." Proc. 52nd Aerospace Sciences Meeting, AIAA paper. No. 2014-1208. 2014.

[20] Ringel et al. "Carbon Fiber Oxidation" in 4D, In preparation.

[21] Panerai, Francesco, et al. "Experimental measurements of the high-temperature oxidation of carbon fibers." International Journal of Heat and Mass Transfer 136 (2019): 972-986.

[22] Prata, Krishna Sandeep, Thomas E. Schwartzentruber, and Timothy K. Minton. "Air–carbon ablation model for hypersonic flight from molecular-beam data." AIAA journal 60.2 (2022): 627-640.

Advancements in Coupled Flow and Material Modeling for Entry Systems

Computationally efficient, ideal for initial estimates

One-Way Coupling Two-Way Coupling Unified Coupling

Accurate CFD-MR modeling with mesh motion, computationally expensive due to iterations

Accurate flow-mat. modeling without mesh motion, computationally efficient, under development

