

Porous material Analysis Toolbox based on OpenFOAM

2023 AIAA SciTech

TP-18: Ablation Material Responses

NASA Ames Research Center Entry Systems Modeling (ESM)

3D ablation modeling of silicone-coated heatshield compared to MEDLI2 in-flight data

Jeremie Meurisse¹, Georgios Bellas Chatzigeorgis¹, Dinesh Prabhu¹,

Arnaud Borner¹, John Thornton¹, Brett Cruden¹, Nagi Mansour¹,

Joshua Monk² & Brody Bessire²

¹Analytical Mechanics Associates, Inc. at NASA Ames Research Center ²NASA Ames Research Center 01/26/2023

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

Introduction of PICA-NuSil

NuSil, a silicone-based overcoat, was sprayed onto the MSL and Mars 2020 heatshields including their in-depth temperature instruments (MISP) to mitigate the spread of phenolic dust from PICA. The behavior and material response of the PICA-NuSil (PICA-N) system consists an open problem in the literature [3,4].

In order to better understand the behavior of the NuSil coating, dedicated experimental campaigns have been conducted, with the first one taking place in NASA's Langley, HyMETS facility in March 2019 [1,2] and the second one in the AHF at NASA ARC in November 2020.

A novel Material Response (MR) model for PICA-N was implemented in PATO that accounts for the observed temperature discontinuity and change of recession rate [4].

Porous material Analysis Toolbox based on OpenFOAM

PATO [4] is a modular research and development platform designed to test innovative physics-based models for porous materials submitted to high-temperature environments at the macro-scale.

PATO overview

PATO website <u>http://www.pato.ac</u>

- Private GitLab <u>https://gitlab.com/PATO/PATO-dev</u>
- > Installation

conda create --name pato -c conda-forge -c pato.devel pato

- 1D, 2D, 3D tutorials \$PATO DIR/tutorials
- > NASA developers

Jeremie Meurisse, John Thornton, Georgios Bellas Chatzigeorgis & Sergio Fraile Izquierdo

Creators (2010)

Jean Lachaud & Nagi Mansour

Surface modeling of the charred NuSil as pure silica

λTS

At first, the charred NuSil surface was modeled as pure silica (SiO_2) based on the observations of a glassy layer on the post-test coated samples [1,2]. The multiple components formulation of the surface mass balance was implemented in PATO to model the pure silica surface [3,4].

$$\begin{split} B_{\rm c}' &= \frac{\sum_{l=1}^{N_{\rm el}} \left[B_{\rm g}' \left(z_{l,\rm pg} - z_{l,\rm w} \right) + z_{l,\rm e} - z_{l,\rm w} \right]}{\sum_{l=1}^{N_{\rm el}^{\rm s}} \left(z_{l,\rm w} - z_{l,\rm ca} \right)} \\ \begin{bmatrix} -\underline{\mathbf{k}} \cdot \partial_x T \end{bmatrix} \cdot \mathbf{n} &= C_{\rm H}' (h_{\rm e} - h_{\rm w}) + \dot{m}_{\rm ca} (h_{\rm ca} - h_{\rm w}) \\ &+ \dot{m}_{\rm pg} (h_{\rm pg} - h_{\rm w}) + q_{\rm rad} \end{split}$$

Then, the surface mass and energy balance equations were modified by adding a constant of the diffied SiO₂ blowing rate (ΔB_c) and the wall enthalpy (Δh_w) to reproduce the HyMETS experimental results [3,4].

Ablation simulations in HyMETS using charred NuSil modeled as SiO₂

Material	Model	Atmosphere	Heat flux [W/cm ²]	Pressure [kPa]	
PICA-N	2	Earth	140	5.6	
			HyM at 2 - 2200. - 2000. - 1800. - 1600. - 1400. - 1200. - 1200. - 1000. - 1000. - 1000. - 400. - 200.	ETS PSO2 8 sec [1]	

Fig. 1 Temperature and shape change at 30 sec [3,4].

BLAYER: $p_w = 5.6 \ kPa \ | \ C_H = 0.18 \frac{kg}{m^2 s} | \ h_e = 9.7 \frac{MJ}{kg}$ **Recession**: $r_{exp} = 1.93 mm$ | $r_{pato} = 1.98 mm$ **Modified NuSil B' table**: $\Delta B'_c = 0.0195 \mid \Delta h_w = 3 \frac{MJ}{M}$ 2500 Wall TC1 TC2 2000 TC3 Temperature (K) TC4 1500 Experiments - PATO 1000 500 10 20 30 40 0 Time (s)

Fig. 2 Evolution in time of the temperature [3,4].

Surface modeling of the charred NuSil as silicon oxycarbide

Here, the charred NuSil surface was modeled as SiOC with initial thermal 18 properties found in the literature [5]. 16 Parameters of heat capacity, enthalpy, 14 and entropy were optimized using a $\bigcirc 12$ multi-**3**.e**Optimized SiOC**n. The $\bigcirc 10$ simulated temperature results were 8 compared to PICA-N arc jet test cases 6 (HyMETS and AHF-346). Note: The SiOC 4 phase change was not included. The optimization solution was not unique.

Differential Scanning Calorimetry (DSC) was performed to analyze post-test sample surfaces from the HyMETS test campaign. The heat capacity of the charred NuSil surface was measured as a f**4**. SiOC based on exp. bout 1800 K. The heat capacity values were then used to build the latest surface model of the charred NuSil based on SiOC measured properties.

Ablation simulations using charred NuSil modeled as optimized SiOC

NASA9 database: solution of the parameters optimization for the SiOC properties at the surface											
a ₁	a ₂	a ₃	a ₄	a ₅	a ₆	a ₇	b ₁	b ₂			
2.741895240e+05	-3.757811021e+03	2.318030056e+01	-2.890504258e-03	-5.487137170e-07	6.627457661e-10	-1.055953088e-13	-5.497138874e+04	-1.394824571e+02			

The properties of the NASA9 database (c_p , h and s) were used in the Mutation++ library [6] to compute the equilibrium of the mixture which directly impacts B'_c and h_w . The PATO ablation simulations using the optimized SiOC properties for the charred NuSil surface model were compared to HyMETS and AHF-346 data.

Comparison between the surface charred NuSil models and MEDLI2

The 1D simulated temperatures using the charred NuSil surface modeled as **pure silica** showed the best agreement with the flight data from the thermal plugs MTH of the MEDLI2 suite [7]. Hereafter, this surface model will be used in the different PICA-N ablation simulations.

Aerothermal environments for the Mars 2020 heatshield

Rarefied regime: SPARTA [8]

Continuum regime: *DPLR* [9]

Radiation: NEQAIR [10]

DSMC **SPARTA** code was used to compute the environment in the rarefied regime from 0 to 43 sec. **DPLR** code was used to compute non-equilibrium supersonic and hypersonic flows around the aeroshell from 43 to 130 sec. Radiative heating was computed over the entire heatshield using the **NEQAIR** program on each CFD points. The convective peak heating occurred at 80 sec followed by the radiative one at 90 sec.

3D ablation simulations of the Mars 2020 heatshield

The heatshield geometry was discretized with an unstructured grid (100k cells including 60 in-depth). 3D PATO material response of the Mars 2020 heatshield using the charred NuSil **surface modeled as pure SiO₂**. The total coating thickness was estimated to be 200 μ m. The surface recession results indicate that the heatshield was **still fully covered by a layer of charred NuSil** after the Martian atmospheric entry.

PICA-NuSil model compared to MEDLI2 flight data

PICA-NuSil model compared to MEDLI2 flight data

Summary of the PICA-NuSil model

Conclusion

- 4 charred NuSil surface models developed:
 - 1. Pure silica : best match with MEDLI2 data.
 - 2. Modified SiO₂: match HyMETS exp.
 - **3. Optimized SiOC** : match HyMETS/AHF exp.
 - 4. SiOC based on exp. : match optimized SiOC.
- 3D ablation simulations for Mars 2020:
 - **SPARTA**: rarefied regime using DSMC [0-43] sec.
 - **DPLR**: CFD in fully turbulent regime [43-130] sec.
 - **NEQAIR**: Radiative heating at each CFD points.
 - **PATO**: 3D material response (T & rec.) using the charred NuSil surface modeled as pure silica.
 - Model indicates that the Mars 2020 heatshield was still fully covered by a NuSil layer after entry.
 - Good agreement was found between the PICA-N model (pure SiO₂) and the MEDLI2/MTH plugs.

Future work

- Development of a new model that couples pyrolysis and char blowing gases between DPLR and PATO.
- 3D ablation simulations of the Mars 2020 heatshield using the PICA-N model that will include the coupling of blowing gases. Results will be compared to MEDLI2 flight data.
- Further studies are needed to have a better understanding of the transition from laminar to turbulent.

References

[1] Bessire, Brody K., et al. "Progress Towards Modeling The Mars Science Laboratory PICA-Nusil Heatshield." 16th International Planetary Probe Workshop, 2019.

[2] Bessire, Brody K., et al. "Analysis of the PICA-NuSil HyMETS Arc-Jet Campaign." 11th Ablation Workshop, 2019.
[3] Meurisse, Jeremie B.E., et al. "Progress towards modeling the ablation response of NuSil-coated PICA." 11th Ablation Workshop, 2019.

[4] Meurisse, Jeremie BE, et al. "Equilibrium model for the ablation response of silicone-coated PICA." International Journal of Heat and Mass Transfer 201 (2023): 123523.

[5] Stabler, Christina, et al. "Thermal properties of SiOC glasses and glass ceramics at elevated temperatures." Materials 11.2, 2018.

[6] Scoggins, et al. "Mutation++: MUlticomponent Thermodynamic And Transport properties for IONized gases in C++." SoftwareX 12, 2020.

[7] Hwang, Helen, et al. "Mars 2020 entry, descent, and landing instrumentation (MEDLI2)." 46th AIAA Thermophysics Conference. 2016.

[8] Gallis, Michael A., et al. "Direct simulation Monte Carlo: The quest for speed." AIP Conference Proceedings. Vol. 1628. No. 1. American Institute of Physics, 2014.

[9] Wright, Michael J., Todd White, and Nancy Mangini. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia Version 4.01. 1. National Aeronautics and Space Administration, Ames Research Center, 2009.

[10] Park, Chul. "Nonequilibrium air radiation (Nequair) program: User's manual." Unknow (1985).

[11] Lachaud, Jean, et al. "A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures." International Journal of Heat and Mass Transfer 108 (2017).